
10 CROSSTALK The Journal of Defense Software Engineering April 1999

Identifying Requirements –
How Will I Know One When I
See One?
Requirements begin their lives when first
elicited from customers or users. Elicita-
tion may occur using any of a variety of
techniques such as interviews, brain-
storming, prototyping, questionnaires,
and quality function deployment or
techniques. Typically, requirements start
out abstractly, e.g., “I need a system that
controls elevators.” As exploration con-
tinues, they become more specific, more
detailed, and less ambiguous—they split
and recombine in new ways (especially
when multiple cases exist). Eventually, a
set of highly detailed requirements
emerges, e.g., “When the ‘up’ button is
pressed, the light behind that button
illuminates within one second.”

Once captured, it is extremely impor-
tant to maintain traces from each require-
ment to its more abstract predecessor
requirements and to its more detailed
successor requirements. Traceability aids
in change management and is a funda-
mental component of quality assurance
and sound requirements management.

The final, most detailed require-
ments are contained in a document
called a requirements specification. This
specification must be communicated
and agreed upon by all relevant parties.
It serves as the basis for design (it tells
designers what the system is supposed to
do) and for test (it tells testers what the
system is supposed to do). Good require-

ments specifications exhibit the follow-
ing characteristics [1].
• Lack of ambiguity – It is unlikely

your product will satisfy users’ needs
if a requirement has multiple inter-
pretations.

• Completeness – Although it may be
impossible to know all future require-
ments for a system, you should at least
specify all known requirements.

• Consistency – It is impossible to
build a system that satisfies all re-
quirements if two requirements are
in conflict.

• Traces to origins – The source of
each requirement should be identi-
fied. It may have evolved from the
refinement of a more abstract re-
quirement, or it may have come from
a specific meeting with a target user.

• Absence of design – As long as re-
quirements address external behav-
iors as viewed by users or by other
interfacing systems, they are still
requirements regardless of their level
of detail. When a requirement at-
tempts to specify the existence of
particular subcomponents or algo-
rithms, it is no longer a requirement
but rather design information.

• Enumerated requirements – Most
requirements specifications enhance
their readability by including auxil-
iary types of information that are not
requirements. This information
includes introductory paragraphs or
sentences, summary statements,
tables, and glossaries. Actual require-
ments contained in the document
should be somehow easily discern-
ible, whether by unique font, identi-
fying label, or other highlighting.

A complete list of principles to adhere to
when performing requirements specifica-
tion appears in Chapter 3 of [2].

Writing Your SRS – Getting Off
to a Good Start
Many important documents exist within
your development project: descriptions
of user needs, design documents, and
test plans. But one particular document,
the software requirements specification
(SRS), is a primary concern of the soft-
ware developer. The purpose of this
document is to define the complete
external characteristics of the system to
be built. It defines all the behavioral
requirements, e.g., this system shall do A
when the environment does B, and non-
behavioral requirements, e.g., the system
shall have an availability of 99.9 percent.
Although standards are by no means a
panacea, an organization that adopts a
standard for the SRS achieves several
benefits:
• The standard serves as a checklist of

things to be addressed, so nothing is
left out.

• It helps readers quickly locate and
review requirements.

• It shortens the learning curve for new
requirements writers and other mem-
bers of the project team.
Numerous software specification

standards can be used as a starting point
in drafting an SRS. One that provides a
good deal of guidance and flexibility is
IEEE/ANSI 830-1993, IEEE Recom-
mended Practice for Software Require-
ments Specifications. [3] Many other
standards can be adopted to suit your
needs. A good resource is the compila-
tion by M. Dorfman and R. Thayer [4].
They have reprinted 26 different re-

 Making Requirements Management Work for You
Alan M. Davis, Omni-Vista, Inc.

Dean A. Leffingwell, Rational Software, Inc.

This article derives from “Using Management Re-
quirements to Speed Delivery of Higher-Quality
Applications,” Rational Software Corporation,
Copyright 1995, 1996, 1997, 1998, 1999. All
Rights Reserved.

Requirements are capabilities and objectives to which software must conform and are the
common thread for all development activities. Requirements management is the process of
eliciting, documenting, organizing, and tracking changing requirements and communicat-
ing this information across the project team. Implementing a requirements management
effort ensures that iterative and unanticipated changes are maintained throughout the project
lifecycle. Without these measures, high-quality software is difficult if not impossible to achieve.

CROSSTALK The Journal of Defense Software Engineering 11April 1999

quirements specifications under one
cover including national, international,
Institute of Electrical and Electronics
Engineers (IEEE), American National
Standards Institute (ANSI), NASA, and
U.S. military standards.

It is important that your document
outlines encourage accuracy, consistency,
and a short learning curve. IEEE/ANSI
830-1993 serves as a good starting point
for an SRS. Then, based on usage, you
may find it beneficial to modify the
standard and turn it into a corporate
standard that better matches your
company’s specific processes and culture.

Selecting Requirements from Your
Documents
Requirements documents contain some
information that is not system require-
ments, e.g., introductions, general sys-
tem descriptions, glossary of terms, and
other explanatory information. Al-
though important to an understanding
of the requirements, they do not consti-
tute requirements to be fulfilled by the
system.

To ease communication of require-
ments and allow requirements manage-
ment, writers should label those portions
of text, graphics, or embedded objects
that must be implemented and subse-
quently tested. Ideally, the requirements
will be left in their original place rather
than stored in multiple places; that is,
they can be edited and maintained in the
project documents even after they have
been selected as individual requirements.
This makes it easier to keep project
documentation up to date as require-
ments change.

Organizing Your Requirements
Whether following a recognized stan-
dard or yours, you will need a section
devoted to specific requirement descrip-
tions. If you have isolated 500 require-
ments, for example, you should find a
way to group them to aid in understand-
ing rather than document them as a long
list of bullets. We recommend organiza-
tion by
• Mode of operation.
• Class of user.
• Object.
• Feature.

• Stimulus.
• Combining any of the above [1].

Applications that have clearly defined
states (powered up, error recovery, etc.)
could have their requirements grouped
under their corresponding mode of
operation. Systems that have a signifi-
cant number of diverse users might be
best organized by class of user. For ex-
ample, a specification for an elevator
control system could be organized into
three major subsections: passenger, fire-
man, and maintenance employee. This
provides a logical way to group specific
requirements so that they can be reviewed
and understood by each class of user.

Other applications may best be
suited to organization by feature; that is,
highlight the features and their intended
behaviors as viewed by the user. Others,
e.g., an air traffic control system, which
is rich in real-world objects, may best be
organized by grouping the behaviors of
objects in the system. This approach may
also be well suited to software organiza-
tions that have adopted object technology
as their development paradigm.

Managing Requirements with
Attributes
All requirements have attributes regard-
less of whether they are recognized.
These attributes are a rich source of
management information that can help
you plan, communicate, and track your
project’s activities throughout the life-
cycle. Each project has unique needs and
should therefore select the attributes that
are critical to its success. Following is a
sample.

Customer Benefit – All requirements
are not created equal. Ranking require-
ments by their relative importance to the
end-user opens a dialogue with custom-
ers, analysts, and members of the devel-
opment team.

Effort – Clearly, some requirements
or changes demand more time and re-
sources than others. Estimating the
number of person-weeks or lines of code
required, for example, is the best way to
set expectations of what can or cannot
be accomplished in a given time frame.

Development Priority – Only after
considering a requirement’s relative
customer benefit and the effort required

to implement it can the team make
feature trade-offs under the twin con-
straints of a project’s schedule and bud-
get. Priority communicates to the entire
organization which features will be done
first, which will be implemented if time
permits, and which will be postponed.
Most projects find that categorizing the
relative importance of requirements into
high, medium, and low or essential,
desirable, and optional is sufficient,
although finer gradations are possible.

Status – Key decisions and progress
should be tracked in one or more status
fields. During definition of the project
baseline, choices such as proposed, ap-
proved, and incorporated are appropriate.
As you move into development, in
progress, implemented, and validated
could be used to track critical project
milestones.

Authors – The names of people (or
teams) responsible for the requirement
should be recorded in the requirements
database, whether it is the person respon-
sible for entering the text or the person
responsible for identifying the need.

Responsible Party – The person who
ensures the requirement is satisfied.

Rationale – Requirements exist for
specific reasons. This field records an
explanation or a reference to an explana-
tion. For example, the reference might
be to a page and a line number of a
product requirement specification or to a
minute marker on a video tape of an
important customer interview.

Date – The date a requirement was
created or changed should be recorded
to document its evolution.

Version of Requirement – As a re-
quirement evolves, it is helpful to iden-
tify the version numbers (and history) of
requirements changes.

Relationships to Other Require-
ments – There are many relationships
that can be maintained between require-
ments. For example, attribute fields can
record
• The more abstract requirement from

which this requirement emanated.
• The more detailed requirement that

emanated from this requirement.
• A requirement of which this require-

ment is a subset.

Making Requirements Management Work for You

12 CROSSTALK The Journal of Defense Software Engineering April 1999

• Requirements that are subsets of this
requirement.

• A requirement that must be satisfied
before this requirement is satisfied.
It is especially important to maintain

linkages from requirements to all devel-
opment products that emanate down-
stream from them. By providing these
links, one can easily ascertain the impact
of any changes and quickly determine
development status (which should be an
attribute of those downstream entities).

The above list is not exhaustive.
Other common attributes include stabil-
ity, risk, security, safety release imple-
mented, and functional area. Whichever
method is used to track them, attributes
should be easily customized to adapt to
the unique needs of each team and each
application.

Requirements Traceability –
Ensuring Quality and Managing
Change
Requirements traceability is explicitly
required in most Department of Defense
software contracts and is typically prac-
ticed by manufacturers of all high-reli-
ability products and systems. In the
health-care industry, requirements trace-
ability is governed by the proposed
changes in the Good Manufacturing
Practices Regulation. However, most
companies outside these industries do
not routinely practice requirements
traceability.

Traceability is a link or definable
relationship between two entities. Those
who use requirements traceability find
that it provides a level of project control
and assured quality that is difficult to
achieve by any other means. At Abbott
Laboratories, where traceability was
instituted in 1987, they like to say, “You
can’t manage what you can’t trace.” [5]
This makes intuitive sense if for no other
reason than to emphasize that full re-
quirements test coverage is virtually
impossible without some form of re-
quirements traceability.

Benefits of Requirements Tracing
In its simplest terms, requirements trac-
ing demonstrates that software does
what it is supposed to do. The key ben-
efits of this process include

• Verification that all user needs are
implemented and adequately tested.

• Verification that there are no “extra”
system behaviors that cannot be
traced to a user requirement.

• Understanding the impact of chang-
ing requirements.

Implementing Requirements
Traceability
Figure 1 shows a sample hierarchy of
project documents. In this example, the
product requirements document is the
“source” of all requirements. In other
examples, the source document could
be a user-needs document or system
specification.

A hierarchical relationship between
two documents in Figure 1 is an indica-
tion that interrelationships may exist
among specific elements in those docu-
ments. For example, the relationship
shown between the product require-
ments document and the software re-
quirements specification implies that any
specific product requirement could be
satisfied by one or more software re-
quirements. Similarly, any software re-
quirement may help to satisfy one or
more product requirements. Clearly, a
product requirement with no related
software requirements or hardware re-
quirements will not be satisfied. The
reverse also is true: A software require-
ment with no related product require-
ments is extraneous and should be
eliminated.

In addition to establishing document
relationships to support traceability, you
will need to employ some form of sys-

Figure 1. Example document hierarchy.

tem to maintain links between indi-
vidual items within the hierarchy. This
can be done by embedding links and
identifiers directly within the document
or by using a separate spreadsheet or
database that manages the linkages out-
side the document. There are advantages
and disadvantages to each of these ap-
proaches. A new class of requirement
management tools automatically main-
tains traceability links. Ideally, this capa-
bility is integrated in the same tool that
manages and manipulates the docu-
ments and their individual requirements.

Change Management
Traceability provides a methodical and
controlled process to manage the
changes that inevitably occur as an appli-
cation is developed. Without tracing,
every change requires that documents be
reviewed on a moment-to-moment basis
to see which, if any, elements of the
project require updating. Because it is
difficult to establish whether all affected
components have been identified,
changes tend to decrease system reliabil-
ity over time.

With traceability, management of a
change can proceed in an orderly fash-
ion. The impact of a change can now be
understood by following the traceability
relationships through the document
hierarchy. For example, when a user
need changes, a developer can quickly
identify which software elements must
be altered, a tester can pinpoint which
test protocols must be revised, and
managers can better determine the

Software Quality Assurance

CROSSTALK The Journal of Defense Software Engineering 13April 1999

potential costs and difficulty to imple-
ment the change.

Requirements Reporting –
Easing Management Reviews
A requirements repository gives manag-
ers a powerful tool to track and report
project status. Critical milestones are
more easily identified. Schedule risks are
better quantified. Priorities and owner-
ship are kept visible. Querying the re-
pository can quickly uncover facts that
provide answers to important questions,
such as
• How many requirements are there

on this project? How many are high
priority?

• What percentage of the requirements
are incorporated in the baseline?

• When will they be implemented?
• Which requirements changed since

the last customer review?
• Who is responsible for the changes?
• What is the estimated cost impact of

the proposed changes?
High-level reports aid management

reviews of product features. Require-
ments can be prioritized by user safety
considerations or by customer need,
difficulty, and cost to implement. These
specialized reports help managers better
allocate scarce resources by focusing
attention on key project issues. The net
result is that managers make better deci-
sions and thereby improve the outcomes
of their company’s application develop-
ment efforts.

Conclusion
Software development is one of the most
exciting and rewarding careers of our
time. Unfortunately, many of us carry
the scars from applications that missed
expectations. It is common for applica-
tions to overshoot their schedule by half,
deliver less than originally promised, or
be canceled before release. To keep pace

with rising complexity and increased
user demands, we must begin to mature
the ways in which we develop, test, and
manage our software projects. The first
step in this advancement is improved
requirements management.

Requirements management provides
a “live” repository of application require-
ments and their associated attributes and
linkages. This repository establishes an
agreement on exactly what the software
is supposed to do. It provides a wealth of
information that can be used to manage
and control your projects. Your quality
will improve, and the software you build
will better fit your customer’s needs. And
with requirements data available to all
members, team communication is
greatly improved.

Start now. You can cut project costs
significantly by catching requirement
errors early. Try to write down, in plain
English, all the requirements of your
current project. (Hint: if this is difficult
or was not already done, ask why.) Com-
pile these requirements in a suitable,
short report and share them with your
customers and peers. Get their feedback.
Are any requirements missing, incom-
plete, or wrong? There is a good chance
the answer is yes to all three. If it is still
early enough to correct these errors,
you have saved a lot of money. If it is
too late, ask what is it about your pro-
cess that could change, then propose a
first step. ◆

About the Authors
Alan M. Davis is founder and chief ex-
ecutive officer of Omni-Vista, Inc.,
which develops and markets software
development decision-making support
tools. He serves as professor of Computer
Science and El Pomar professor of soft-
ware engineering at the University of
Colorado at Colorado Springs. He is
author of Software Requirements: Objects,

What You Can Do
• Continue to educate yourself on the benefits of requirements management.

Secure training. Read. We have included a suggested list at the end of this
article.

• Explore and use the new tools that make requirements management easier.
• Adopt a personal strategy to better communicate the requirements you own.

Functions, and States and 201 Principles of
Software Engineering and is author or co-
author of more than 100 papers on soft-
ware and requirements engineering. He
was editor in chief of IEEE Software
Magazine from 1994 to 1998.

Dean A. Leffingwell is a vice president of
Rational Software and is general manager
of Rational University, where he is re-
sponsible for methodology, the Rational
Unified Process, and customer education
and training. Before 1997, he was chief
executive officer and co-founder of Req-
uisite, Inc., developers of the Requi-
sitePro requirements management prod-
uct and Requirements CollegeTM. He is
considered an authority in requirements
management and software quality and is
a frequent speaker on these topics. He has
a master’s degree in engineering from the
University of Colorado.

References
1. CHAOS, The Standish Group Interna-

tional, Inc., Dennis, Mass., 1994.
2. Davis, A., 201 Principles of Software Devel-

opment, McGraw-Hill, New York, 1995.
3. http://standards.ieee.org/catalog/olis/

arch_swe.html
4. Dorfman, M. and R. Thayer, Standards,

Guidelines and Examples of System and
Software Requirements Engineering, IEEE
Computer Society, Los Alamitos, Calif.,
1991.

5. Watkins, R. and M. Neal, “Why and
How of Requirements Tracing,” IEEE
Software, July 1994, pp. 104-106.

Suggested Reading
1. Davis, Alan M., Software Requirements –

Objects, Functions, and States, Prentice-
Hall, Englewood Cliffs, N.J., 1993.

2. Gause, Donald C. and G. Weinberg,
Exploring Requirements – Quality Before
Design, Dorset House, New York, 1989.

For information on how to order
these books or for addresses of the avail-
able Internet forums that discuss re-
quirements management, please write,
call, or send E-mail to

Rational Software Corporation
18880 Homestead Road
Cupertino, CA 95014
Voice: 800-728-1212
Fax: 408-863-4120
E-mail: info@rational.com
Internet: http://www.rational.com.

Making Requirements Management Work for You

